Vertical profiles of cloud condensation nuclei, aerosol hygroscopicity, water uptake, and scattering across the United States

J. J. Lin¹, A. Bougiatioti^{1,3}, A. Nenes^{1,2}, B.E. Anderson⁴, A. Beyersdorf⁴, C.A. Brock^{5,6}, T.Gordon^{5,6}, D.A. Lack^{5,6}, D. Law⁵, J. Liao^{5,6}, R.H. Moore⁴, A.M. Middlebrook⁵, M.S. Richardson^{5,6}, K.L. Thornhill⁷, N.L. Wagner^{5,6}, A. Welti^{5,6†}, E. Winstead⁷, L. Ziemba⁴

 ¹Georgia Tech, Atlanta, GA; ²School of Chemical and Biomolecular Engineering, Georgia Tech, Atlanta, GA;
 ³National Technical University of Athens, Zografou Campus, Athens, Greece; ⁴NASA Langley Research Center, Hampton, VA; ⁵NOAA Earth System Research Laboratory, Boulder, CO; ⁶CIRES, University of Colorado Boulder, Boulder, CO; ⁷Science System and Application, Inc., Hampton, VA; [†]Now at Institute for Atmosphere and Climate, ETH Zürich, Switzerland

Acknowledgments: NOAA, NASA, EPA

Introduction

Motivation:

- Near surface pollution is difficult to diagnose from satellite-borne observations.
- Evolution of vertical distributions of aerosol properties are important for air quality and radiative transfer.
- Water uptake has a critical impact on aerosol optical depth and its radiative impacts (2-3 times the aerosol dry mass globally; Liao and Seinfeld, 2005).

Objectives:

- Vertical profiles of cloud condensation nuclei (CCN) and water uptake properties.
- Evaluate measurements of water uptake against predictions.
- Quantify the major contributors of LWC variability , particularly the relative role of organic vs. inorganic species.

DISCOVER-AQ Datasets

Baltimore-Washington (July 2011)

San Joaquin Valley (Jan-Feb 2013)

Denver, Colorado (July-August 2014)

Houston, Texas (September 2013)

Experimental methods: Data from DISCOVER-AQ

Aerosol Concentrations:

- Total and Non-Volatile Particles
- CCN counter (activation efficiency)

Aerosol Sizes (10 nm - 5 µm):

• SMPS, UHSAS, OPC & APS

Optical Properties:

- Scattering & Absorption Coefficients
- Single Scattering Albedo
- Angstrom Exponent
- f(RH)_{80/20} (effects of humidity on scattering)

Composition:

- Black Carbon Mass (SP2)
- Particle-Into Liquid Sampler (PILS, 4 min. resolution)

Focus on DISCOVER-AQ Houston Flights

- Unlike in other phases, Houston displayed a complex and heterogeneous vertical structure.
- Above boundary layer you had layers of smoke transported from east; sometimes aerosol in BL less concentrated than aloft.

PILS-IC (Particle-Into-Liquid-Sampler coupled with Ion Chromatograph) \rightarrow water soluble ions in particles (SO₄²⁻, NO₃⁻, Cl⁻, Br⁻, NO₂⁻, PO₄³⁻, NH₄⁺, Na⁺, Ca²⁺, Mg²⁺, K⁺, etc.).

PILS-TOC (Particle-Into-Liquid-Sampler, Total Organic Carbon) \rightarrow water soluble organic carbon.

AMS (HR-ToF-AMS) \rightarrow non-refractory components of submicron aerosols (primarily organic aerosol mass).

SMPS, UHSAS \rightarrow aerosol size distribution

CCNc \rightarrow particle hygroscopic parameter (κ).

Nephelometers \rightarrow ambient and dry aerosol light scattering coefficients (σ_{sp}) , used to infer LWC.

$$f(RH) = \frac{\sigma_{sp}(wet)}{\sigma_{sp}(dry)} \qquad LWC = [f(RH)^{1.5} - 1]m_{dry}/\rho_p$$

Analysis methods - LWC calculations

Inorganic species: ISORROPIA-II (Fountoukis and Nenes, 2007)

Organic species: κ-Köhler theory (Petters and Kreidenweis, 2007)

$$W_o = \frac{m_o}{\rho_p} \frac{\kappa_o}{(1 - \mathsf{RH})} \qquad \begin{array}{l} m_o: \text{ aerosol mass} \\ \rho_p: \text{ aerosol density} \\ k_o: \text{ hygroscopicity parameter} \end{array}$$

Analysis method: LWC/hygroscopicity closure

Input data includes:

- Particle ions (**SO₄²⁻, NH₄+,** NO₃⁻, Cl⁻, Na⁺, K⁺, Ca²⁺, Mg²);
- Total organics, κ_{org} and f(RH)
- Nephelometer RH and T

Analysis method: LWC/hygroscopicity closure

Analysis method: LWC/hygroscopicity closure

Analysis method: LWC attribution for ambient RH

Input data includes:

- Particle ions (**SO₄²⁻, NH₄+,** NO₃⁻, Cl⁻, Na⁺, K⁺, Ca²⁺, Mg²);
- Total organics, κ_{org} and f(RH)
- Ambient RH and T

LWC attribution: Channelview

Organics contribute comparable (or more) water than inorganics Most of the dry (and wet) aerosol mass in the boundary layer

LWC attribution: Galveston

- Organics contribute comparable (or more) water than inorganics
- Smoke above boundary layer that dominates the aerosol (+water) mass in the column.

Biomass burning influence above boundary layer?

Comparison against SOAS (Jun-Jul 2013)

- ✤ W_j: LWC associated with inorganics
 W_o: LWC associated with organics
- Total predicted water (W_i + W_o) matches measured water very well (at ambient RH)
- ✤ LWC diurnal ratio (max/min) is 5.
- W_o was significant, 29-39% of total LWC at all sites. (See Guo et al., 2014, ACPD)

Take home messages

- Thermodynamic prediction of LWC verified by f(RH) and hygroscopicity measurements.
- Organics (mostly water-soluble) dominated the aerosol composition.
- Water associated with organic species is significant: 20-90%.
- The effect of organic water is higher in the BL but still significant above. Sometimes even more important (BB).
- The importance of organic water is not episodic but seems to be regional (SE US).
- This has important implications for aerosol chemistry .
- Aerosol loadings at ground-level (Houston) were low but high altitude aerosol layers contributed significantly (hence AOD).

THANK YOU!